Characterization System of 64 Pixel Array TES Microcalorimeters

S. Yoshimoto1, K. Maehata1, T. Hara2, K. Mitsuda3, K. Tanaka4, Y. Yamanaka5, K. Sakai5, K. Nagayoshi5, T. Hayashi5, H. Muramatsu5

1; Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 2; National Institute for Material Science, 3; Japan Aerospace Exploration Agency, 4; Hitachi High-Tech Science Corp., 5; Taiyo Nippon Sanso Corp.

Background

X-ray energy dispersive spectroscopy (EDS) performed on electron microscopes allows elemental composition analysis within a nano-scale structure. For element identification with high accuracy X-ray detectors with excellent energy resolution are desired in the EDS system. The energy resolution of the SSD (Si(Li) semiconductor detector) has been achieved theoretical limit. To improve performance of EDS on electron microscopy Single pixel TES microcalorimeter EDS system has been conducted (Maehata et al. in this workshop).

64 pixel array TES microcalorimeter for EDS on STEM
energy resolution < 10 eV
count rate ~ 5 kcps

384 wires (Manganin + NbTi) are installed and thermally anchored at 4 K, 1 K, 0.7 K

Inserted Stick with Wires

stick with wires is inserted to 1K stage in the IVC into vacuuming pipe

Dilution Refrigerator

Mixing Chamber
- phase separating (3He rich / dilute phase)
- cooled to <100 mK

Still
- distilling 3He in dilute phase
- 700 mK

1K Pot
- condensing circulating gas
- cooled to 1.3 K by pumping liquid 4He

Operating System
- heat flow (400 wires, estimated)
 - 12 mW
 - 6 μW
 - 0.2 μW
 - 0.2 μW

cooling power
- 60 μW@100 mK

- at 4K and 1K anchor wires are contacted to inside wall of the pipe by stycast
- At wire holder(contacted to 0.7K stage) wires are thermally anchored and switched from Manganin to NbTi superconducting wire

- lowest temperature ; 50 mK
- temperature holding time (<100mK) ; 7 hours
- continuous operation ; 1.5 day