Characterization of Niobium Nitride Resonators at 0.1 K in Microwave SQUID Multiplexers for Readout of Transition Edge Sensors & Metallic Magnetic Calorimeters

S. Kohjio1, F. Hirayama1, H. Yamamori1, S. Nagasawa1, D. Fukuda1, A. Sato1, M. Hidaka1, T. Irimatsugawa2
1 National Institute of Advanced Industrial Science and Technology (AIST), Japan
2 The University of Tokyo, Japan

Summary

- Microwave multiplexer composed of NbN resonators and Nb dissipationless RF-SQUIDs are designed, fabricated, and characterized.
- Measured Q_s, unloaded $Q_s = 3 \times 10^6$ – $Q_c = 3 \times 10^7$ at 0.1 K with removal of amorphous SiO$_2$ on top.
- This Q_s value is much higher than Q_c of Nb ever reported in the world.
- At least, Q_s of NbN is 10 times as large as Q_c of Nb available in AIST.
- For readout of fast X-ray TES array with 1 MHz signal bandwidth/pixel, $Q_s \approx 10^7$ is enough from view point of the decrease of the contribution of noise originated from cryo. HEMT amplifiers.
- Shift of experimental resonant circles on the complex S_11 plane from theoretical ones can be quantitatively compensated by using FPGA-based readout approach through the 50-Ω feed line.
- FPGA-based 300-K electronics are developed. Flux-ramp modulation with 60-kHz saw-tooth signal linearizes the input-output characteristics. Dynamic range, linearity, and cross talk between neighboring pixels are evaluated at 4 K.

Acknowledgement

Fruitful discussion with H. Sasaki1, Y. Sato1, M. Ohno1 and H. Takahashi2.
Fund 1: JSPS Kakenhi Grant No. 15H02251
Fund 2: “The Initiatives for Atomic Energy Basic and Generic Strategic Research” organized by Japan Science and Technology Agency (JST)

S. Kohjiro1, F. Hirayama1, H. Yamamori1, S. Nagasawa1, D. Fukuda1, A. Sato1, M. Hidaka1, T. Irimatsugawa2
1 National Institute of Advanced Industrial Science and Technology (AIST), Japan
2 The University of Tokyo, Japan
s-kohjiro@aist.go.jp

FPGA-based 300-K Electronics for Linearized Readout

Microwave Transmission @ 0.1 K vs. 4 K

- Microwave multiplexer composed of NbN resonators and Nb dissipationless RF-SQUIDs are designed, fabricated, and characterized.
- Measured Q_s, unloaded $Q_s = 3 \times 10^6$ – $Q_c = 3 \times 10^7$ at 0.1 K with removal of amorphous SiO$_2$ on top.
- This Q_s value is much higher than Q_c of Nb ever reported in the world.
- At least, Q_s of NbN is 10 times as large as Q_c of Nb available in AIST.
- For readout of fast X-ray TES array with 1 MHz signal bandwidth/pixel, $Q_s \approx 10^7$ is enough from view point of the decrease of the contribution of noise originated from cryo. HEMT amplifiers.
- Shift of experimental resonant circles on the complex S_11 plane from theoretical ones can be quantitatively compensated by using FPGA-based readout approach through the 50-Ω feed line.
- FPGA-based 300-K electronics are developed. Flux-ramp modulation with 60-kHz saw-tooth signal linearizes the input-output characteristics. Dynamic range, linearity, and cross talk between neighboring pixels are evaluated at 4 K.

Acknowledgement

Fruitful discussion with H. Sasaki1, Y. Sato1, M. Ohno1 and H. Takahashi2.
Fund 1: JSPS Kakenhi Grant No. 15H02251
Fund 2: “The Initiatives for Atomic Energy Basic and Generic Strategic Research” organized by Japan Science and Technology Agency (JST)

S. Kohjiro1, F. Hirayama1, H. Yamamori1, S. Nagasawa1, D. Fukuda1, A. Sato1, M. Hidaka1, T. Irimatsugawa2
1 National Institute of Advanced Industrial Science and Technology (AIST), Japan
2 The University of Tokyo, Japan
s-kohjiro@aist.go.jp