Towards a parametric amplifier for millimeter wave Astrophysics

Roger O’Brient
NASA JPL/ Caltech
Towards a parametric amplifier for millimeter wave Astrophysics

Peter Day, Byong-Ho Eom, Rick LeDuc, Roger O’Brien, Jonas Zmuidzinas
Outline

• Astrophysics Motivation
• Operating principles
• Microwave Paramp
• Designs for millimeter wave devices
Astrophysical Motivation

• High spatial resolution Spectroscopy (ALMA)
• Low spatial resolution spectroscopy for Intensity mapping (e.g. CO)
• Spectroscopy for CMB foreground studies
• VLBI
Astrophysical Motivation

- Front end for heterodyne receiver
Low noise microwave/ millimeter wave amplifiers

- Transistor amplifiers: HEMT, SiGe BPT
 - Broad band, high dynamic range
 - 77K
 - Added noise > ~ 5 $h\nu$/ second / Hz
 (Quantum limit = $\frac{1}{2} h\nu$/ second / Hz)
Low noise microwave/millimeter wave amplifiers

- Transistor amplifiers: HEMT, SiGe BPT
 - Broad band, high dynamic range
 - 77K
 - Added noise $> \sim 5 \ h\nu/\text{second/Hz}$
 (Quantum limit $= \frac{1}{2} h\nu/\text{second/Hz}$)

- Superconducting Junction Parametric Amplifiers
 - Quantum limited
 - Narrow band (resonant)
 - Low dynamic range
Low noise microwave/ millimeter wave amplifiers

- Transistor amplifiers: HEMT, SiGe BPT
 - Broad band, high dynamic range
 - 77K
 - Added noise > \(\sim 5 \hbar \nu / \text{second} / \text{Hz} \)
 (Quantum limit = \(\frac{1}{2} \hbar \nu / \text{second} / \text{Hz} \))

- Superconducting Junction Parametric Amplifiers
 - Quantum limited
 - Narrow band (resonant)
 - Low dynamic range

Can we make a paramp with transistor amp- like bandwidth and dynamic range?

Roger O’Brient
Parametric Amplifiers

Roger O’Brient
Parametric Amplifiers

- Fiber optic paramps at visible frequencies
 - Based on Kerr nonlinearity, four-wave mixing
 - Traveling wave design
 - Broadband

from Hansryd et al. (2002)
Parametric Amplifiers

Frequency

signal

Pump 1

Pump 2

Roger O’Brient
Parametric Amplifiers

Diagram:
- Signal
- Pump 1
- Pump 2
- Beat

Frequency
Parametric Amplifiers
Parametric Amplifiers

$$\omega_{p2} \pm (\omega_{p1} - \omega_s)$$
Parametric Amplifiers

signal

Pump 1

Pump 2

beat

Frequency
Parametric Amplifiers
Parametric Amplifiers

Diagram:

- Signal
- Pump 1
- Pump 2
- Beat
- Phase modulate
- Side-bands:
 \[\omega_{p1} \pm (\omega_{p2} - \omega_s) \]
Parametric Amplifiers

- Signal
- Pump 1
- Pump 2
- Idler

Frequency
Parametric Amplifiers

- Degenerate amplification $\omega_{p1} \approx \omega_{p2}$
Kinetic Inductance Nonlinearity

- Superconducting Transmission line is a Kerr medium
 - Nonlinear kinetic inductance
 - $\Delta L_s = L_s(0)(1 + I^2 / I_*^2)$

![Diagram of NbTiN CPW line and phase shift at 4 GHz](image)

- 0.8 m NbTiN CPW line
- Bias Tee
- \(\Delta \theta \) (rad.)
- \(\Delta \) Transmission (dB)
- 4.7 radians!
Nonlinear dispersion

• Need to maintain phase relation between signal, pump, idler to achieve exponential gain
• Dispersion causes phase slippage
• The non-linearity itself has a dispersive effect dispersive
 – Self Phase Modulation (SPM), Cross Phase Modulation (XPM)
 – in the fiber paramp, nonlinear dispersion is compensated with intrinsic dispersion
 – operate in anomalous dispersion regime

Graphs:

- Dispersion in Silica
- Fiber paramp gain curve
Harmonic Generation

• Superconducting TRL is nearly dispersionless
 – Third Harmonic Generation (THG) is phase matched and efficient
 – Not a problem in fiber paramps due to large dispersion
 – Higher harmonic processes leads to “shock formation”

(From R. Landauer, 1960)

Roger O’Brient
New Idea: Dispersion Engineering

- Periodic loading to produce bandgap at $3\omega_p$
Achieving phase match

- Also use dispersion to cancel nonlinear phase slippage
Achieving phase match

- Also use dispersion to cancel nonlinear phase slippage
Impedance matching

- Long tapers transform 50Ω to paramp’s internal impedance
- Dispersion at pump frequency is phased in to avoid fringing from finite periodic structure
Microwave traveling wave amp

- ~0.8m CPW line – 1um line width, 35nm film thickness
Paramp gain

- Dynamic range limited by pump saturation (0.1mW)
Paramp gain

NIST 2-stage paramp (JPL-inspired design)
(courtesy of J. Gao)

Roger O’Brient
Y-factor noise measurement

- Noise referred to paramp input
 - HEMT noise subtracted
- Noise measured with continuous pump ~ 3.5 photons at 8.7 GHz
- Pulsed pump (5% duty cycle)
 - Excess noise reduced to ~2 photons noise
- Thermal effect
 - Testing better heat sinking, so far no improvement
Onset of dissipation

- Nonlinearity / Dissipation probed using resonators
 - mechanism for dissipation onset not yet understood
 - defects? Grain boundaries?...
- Nanowire results indicate large dissipationless nonlinearity achievable
- See Aditya Kher’s talk

Roger O’Brient
Extension to higher frequency

- Reduce distance between perturbations to scale frequency upward
- Practical to ~1 THz

![Predicted gain and predicted noise vs. operating temperature graphs](image)

Roger O’Brient
Ground straps

- Connect CPW ground planes to prevent slot mode excitation
- Air gap to avoid problems with amorphous dielectrics

Also investigating wafer vias and micro-machined structures to connect grounds

Aluminum ground strap using resist reflow process

Roger O’Brient
Coupling to Waveguide
Coupling to Waveguide
Waveguide setup

split block device housing

1K cooler
isolators

Roger O’Brien
Paramp gain

- Measured gain of a prototype device ($f_{\text{pump}} = 8.5$ GHz)

- Compare to cavity paramp with ~ 1 - 10MHz bandwidth

Roger O’Brient
Paramp gain ripple

- Measured gain of a prototype device ($f_{pump} = 8.5$ GHz)

- Compare to cavity paramp with ~1 - 10MHz bandwidth

One way gain:

$$S_{21} = Ge^{-i\beta \ell} \frac{T^2}{1 + \Gamma^2 Ge^{-2i\beta \ell}}$$
Reflectionless filters

- absorb out of band power to prevent parametric self oscillation
Summary

• Demonstrated a wideband parametric amplifier design suitable for detector applications

• 2-4 photons added noise
 – Expect quantum limited sensitivity can be reached
 – Thermal contribution to excess noise
 – Control through better thermal management
 – Lower gap materials, eg. TiN, WSi – lower pump lower
 – Defects in films?

• 80-116 GHz amp, $T_N \sim 5K$ higher frequencies

• Gain ripples
 – Improve with better matching, isolators

Coupled mode gain prediction

Prediction for 3 radian phase shift
Dynamic range

- Theoretically limited by pump depletion when $P_{\text{out}} \sim P_{\text{pump}} (\sim -10 \text{ dBm})$
Measurement setup