New application stages of superconducting tunnel junctions in scientific instrumentation

AIST
Masataka Ohkubo, Masahiro Ukibe, Shigetomo Shiki, Go Fujii, Nobuyuki Zen, Katsutoshi Takahashi

University of Tsukuba
Shigeo Tomita, Nobuhiro Kim

RIKEN
Toshiyuki Azuma
STJ detectors have a long history of more than 40 years. Many applications of STJ detectors have been proposed and some of them were not feasible for practical use as scientific instruments due to a low detection efficiency and a problem of thermal inflow and so on.

- Improvement of the fabrication technique CRAVITY (Clean room for analog-digital superconductivity)
 - Original techniques
 - Planarization process [Caldera process]
 - Oxidation process [Ozone process]
- Fabrication of advanced superconducting devices
 - A large scale STJ array with high performance (high ΔE[G1.44], quite low leakage[G2.4], 3D-STJ[G1.42], SPA-STJ[G1.43])
 - Superconducting signal processor (SFQ-TDC) [G2.48]
Room1 (Class 100) : Lithography-room (90m²)
- Single wafer cleaner
- i-line stepper
- Auto or semi coat/develop system
- Wafer processor for wet stripping of photoresist
- Wafer surface analyzer
- Microscopes

Room2 (Class 1000-10000) : Deposition-room (70m²)
- Sputtering machines for Josephson junction (Nb/Al, NbN/TiN)
- Dry etching equipments (RIE, Asher)
- Auto and manual probers
- Thin film stress measurement system

Room3 (Class 10000) : Deposition-room (100m²)
- TEOS-CVD (SiO₂, SiON)
- CMP process equipments
- Nano search microscope

Utility space (30m²)
- Supply equipment of process gases
- Vacuum exhaust units
- DI-water system
- Waste HF tank

Standard wafer size at every machine: 3inch

Access to https://unit.aist.go.jp/riif/openi/cravity/en/equipment/2-12expo.html#
Available technologies at CRAVITY

- **Nb technology**
 - 10-kA/cm² advanced process
 - 2.5-kA/cm² standard process
 - Low-leakage (0.1 pA/µm² @ 200 A/cm²) tunnel junction process

- **NbN technology**
 - SNS-junction process for 10-K operation

- **Al technology**
 - Deep sub-µ trilayer-junction process

Available electronics at CRAVITY

Analog devices: STJ, SQUID, TES, and MKID

Digital devices: SFQ circuits, and qubits
Latest fabrication technology

Advanced process (ADP)

Planarization process (Caldera process)

Si Substrate

Conventional Process

 Nb 9-layer structure

Active layer including JJ and R

Main GP

2nd PTL layer

1st PTL layer

DC power layer
3D wiring for STJ detectors

2D-wiring
Filling factor
\(\sim 7\% \)

3D-wiring
Filling factor
\(\sim 70\% \)

\(10\, \text{mm} \)

\(10\, \text{mm} \)

\(\sim 1.3\, \text{mm} \)

\(100\, \text{mm} \times 100\, \text{mm} \) and \(> 120\, \text{mm} \)

\(\geq 5\) of wires: \(10/10\, \text{mm} \)

Number of the array

\(1000 \sim 10000\)

Sparse array

Closed-packed array
Present status of STJ detector

System energy resolution for 400 eV X-ray: 6.3 eV FWHM
Intrinsic energy resolution: 4.7 eV FWHM (Pulser: 4.2 eV FWHM)

The best energy resolution for Nb/Al STJ
7 times higher energy resolution than that of SDD

DR-P18: Go Fuji
Specifications and appearances

- Energy resolution of X-rays: 10 eV
- Energy range of X-rays: 100 eV - 15 keV (<2 keV: Nb/Al STJ array, >2keV:SSD)
- Pixel number: 100
- Maximum counting rate of X-rays: 1 Mcps
- Cooling: Automatic cryostat without a liquid helium (operation temperature: 0.3 K)

M. Ohkubo et al., *Scientific Reports*, 2, 831 DOI: 10.1038/srep00831 (2012).

Usage examples

Analysis of
- Trace light elements in wide gap semiconductor
- Na dopant in CIGS solar cells
- Mg dopant in LEDs.

Figure 1. XANES spectra of n-type dopant N atoms (300 ppm) in SiC in the as-implanted state and after annealing at 1400 or 1800°C.

Figure 2. Ab initio multiple scattering calculations. (a) XANES spectra calculated with FEFF8.424 for the N atoms in 4H- and 3C-SiC. (b) Crystal structure models of the N-doped
Application fields of SC detectors

Materials analysis: dopant analysis for developing functional and structural materials.

Space physics

Physical chemistry

Electrostatic Storage Ring

Mass analysis of neutral molecule fragments with dissociative recombination (DR)

Determination of neutrino mass

CMB
\[n_\gamma = 411/\text{cm}^3 \]
\[T_\gamma = 2.73 \text{ K} \]

CvB
\[n_\nu = n_\gamma = \frac{3}{4} \left(\frac{T_\gamma}{T_\nu} \right)^2 n_\gamma \]
\[= 56/\text{cm}^2 \]
\[T_\nu = \left(\frac{4}{11} \right)^{3} T_\gamma = 1.95 \text{K} \]