Improving the Energy Sensitivity of Massive Calorimeters to Search for Light Mass Dark Matter

Matt Pyle
University of California Berkeley

LTD-16 Grenoble
15/07/23
Light Mass DM Limits: Why So Bad?
The low-mass WIMP Direct Detection Challenge

\[\Delta E = \frac{\Delta P^2}{2M_N} \sim \frac{2M_{DM}^2v^2}{M_N} \]

Detector Requirement: Amazing Energy Sensitivity
Currently Published (PRL 112, 041302 (2014)):
- $\sigma_{pt} = 340 \text{ eV}_t$
- Threshold: $12 \sigma_{pt}$

SuperCDMS SNOLAB requirements:
- $\sigma_{pt} = 50 \text{ eV}_t$
- Threshold: $7 \sigma_{pt}$
Athermal Phonon Sensors

Collect and Concentrate Phonon Energy into W TES (Transition Edge Sensor)
• Pulse fall time varies with QET density.
• Phonon energy signal bandwidth limited by athermal phonon collection

\[\nu_{signal} = 210 \text{ hz} \]
Transition Edge Sensor: Dynamics

\[\nu_{\text{signal}} \ll \nu_{\text{sensor}} \]

\[\nu_{\text{sensor}} \propto \frac{G}{C} = 4 \text{kHz} \]
Transition Edge Sensor: Noise

DC noise scales with G

$$S_{pG} = 4k_bT^2G$$

Theoretical Power Noise for TES (NEP)
Bandwidth Optimization Rule

\[\nu_{sensor} < \nu_{signal} \]

Power Noise for various G

Phonon Power Noise \([W/\text{rtHz}]\) vs. \(\nu_{signal}\) for various G.
Phonon Sensitivity with T_c

Baseline Energy Resolution (sigma) [eVt]

- Ge iZIP4
- Si iZIP4
- Ge ulZIP
- Si ulZIP

- G48: Measured
- G48: 1/f subtracted
- S12C: Measured
- S12C: 1/f subtracted

$G \propto T_c^4$

$S_{ptfn} = 4k_bT_c^2G$

$\propto T_c^6$

$\sigma_E \propto T_c^3$
New: Noise of G23R Test Device

- $T_c = 52-53\, \text{mK}$
- iZIP-IV TES Geometry

Estimated Noise: TFN + Johnson Noise

Sp = $1.5 \times 10^{-17}\, \text{W/rtHz}$:
- Ge: $\sigma_{pt} \sim 50\, \text{eVt}$
- Si: $\sigma_{pt} \sim 25\, \text{eVt}$
- (15% phonon collection efficiency)
- Some things not yet understood G is $x4$ bigger than expected

Estimated Power Noise [W/rtHz]
New: G23R Sensor Bandwidth

- Sensor Bandwidth measured via voltage bias jitter
- No phase separation
- $\tau_{\text{sensor}} = 35 \ \mu s$
 $\nu_{\text{sensor}} = 4.5 \ \text{kHz}$
- 52 mK W TES is still too fast! We need to continue lowering T_c
Phonon Sensitivity with T_c

Baseline Energy Resolution (sigma) [eVt]

- Ge iZIP4
- Si iZIP4
- Ge ulZIP
- Si ulZIP

- G48: Measured
- G48: 1/f subtracted
- S12C: Measured
- S12C: 1/f subtracted
- Measured G23R

Why are we above the scaling law curve?

G: x4 larger than expected
- W TES films too thick?
- Σ_{ep} varying with T_c?
Why is it taking so long?

What are the fundamental limits in phonon resolution?
Problem #1: Parasitic Power

As we lower T_c, we become more sensitive to nuclear recoils, but we also become more sensitive to environmental noise.

These problems have definitely been solved by other groups here at LTD!
Summary

• We’re slowly, but surely, continuing to improve our phonon energy resolution by lowering T_c and improving our environmental shielding.

• Currently at $\sigma_{pt} \sim 50eV_t (\text{Ge})/25eV_t (\text{Si})$. We have met requirements for SuperCDMS using 75mm detectors, but not yet with a larger 100mm detector.

• Over the coming 5 years we hope to really explore the limits of the technology (ER/NR rejection via charge quantization)
Backup
Energy lost to ionization by 254-eV 73Ge atoms stopping in Ge

K. W. Jones and H. W. Kraner
Brookhaven National Laboratory, Upton, New York 11973
(Received 30 July 1974)

A 1-cm3 Ge(Li) γ-ray detector was placed directly in a beam of thermal neutrons where the 72Ge(n,γ)73Ge reaction produced 254-eV 73Ge recoil atoms in the detector. The primary capture γ rays from the reaction were detected in a 7.6-cm \times 7.6-cm NaI(Tl) detector placed at 90$^\circ$ to the incident beam. In addition to singles measurements a coincidence between the primary capture γ ray and the γ ray or conversion electrons from the decay of the 68.75-keV 73Ge third excited state was used to search for directional effects in the stopping and to check the value of the recoil energy deduced from the feeding of the 68.75-keV level. The level energy was remeasured and a value of 68.755 \pm 0.005 keV was found, which when combined with the results of previous work gives a value of 68.7535 \pm 0.0043 keV. The amount of energy lost to ionization in the stopping of the 254-eV 73Ge atom is found from the energy shift in the peak position for the 68.75-keV level. Our measurement of this shift gives a value of 39.2 \pm 5.5 eV, which is then the energy loss to ionization by the stopping of the 254-eV 73Ge recoil atom. This result is (27 \pm 3)% higher than the theoretical estimate made from an extrapolation of the Lindhard theory to this energy region. An attempt to observe a dependence of the ionization loss on the recoil direction in the Ge crystal was made, but no positive effect was observed.

- Brought to us by Juan
- Photon needs to be huge!
Ge Yield and Lindhard

KSU reactor neutron calibrations: recoil sensitivity below 1 keV_{rec} demonstrated with 0.5 kg detector (a first)

Juan TAUP11
Gory details:
P.S. Barbeau Ph.D. Thesis

ionization energy (keV)

10^0

10^{-1}

recoil energy (keV)

0.4 0.7 1 4

inelastic n scattering (Jones and Kraner 71)
elastic n scattering (Messous et al. 95)
thermal n capture (Jones and Kraner 75)
elastic n scattering (this work)

Lindhard theory (k = 0.2)