Investigation of a pulse shape based discrimination of surface interactions in high purity germanium crystals

Main author: FOERSTER Nadine

Co-authors: Broniatowski Alexandre, CSNSM-Orsay and Karlsruhe Institute of Technology
Eitel Klaus, Karlsruhe Institute of Technology
Foerster Nadine, Karlsruhe Institute of Technology
Siebenborn Bernhard, Karlsruhe Institute of Technology

The detectors of the direct dark matter search experiment EDELWEISS consist of high purity germanium crystals operated at cryogenic temperatures (< 20 mK) and low electric fields (< 1 V/cm). At the moment the surface discrimination is based on the simultaneous measurement of the charge amplitudes on two different types of electrodes. As the rise time of a charge signal strongly depends on the location of an interaction in the crystal, a time-resolved measurement can also be used to identify surface interactions. This contribution presents the results of a study of the discrimination power of the rise time parameter from a hot carrier transport simulation in comparison with special measurements using an EDELWEISS-type detector. In addition, we show the setup for the time-resolved ionization signal read-out in the EDELWEISS-III experiment and first results from data taking in the underground laboratory of Modane.