Holmium Electron Capture Spectroscopy with Transition Edge Sensors

Main author: KUNDE Gerd J.

Co-authors: Barnhart Todd E., University of Wisconsin, Madison
Birnbaum Eva R., Los Alamos National Laboratory
Croce Mark P., Los Alamos National Laboratory
Engle Jonathan W., Los Alamos National Laboratory
Hoover Andrew S., Los Alamos National Laboratory
Kunde Gerd J., Los Alamos National Laboratory
Mocko Veronika, Los Alamos National Laboratory
Nickles Robert J., University of Wisconsin, Madison
Nortier Francois M., Los Alamos National Laboratory
Polington Anthony D., Los Alamos National Laboratory
Rabin Michael W., Los Alamos National Laboratory
Schmidt Dan R., National Institute of Standards and Technology, Boulder
Ullom Joel N., National Institute of Standards and Technology, Boulder
Weisse-Bernstein Nina R., Los Alamos National Laboratory
Wolfsberg Laura E. Wolfsberg, Los Alamos National Laboratory

Holmium-163 has become the center of attention for the determination of the kinematic mass of the electron neutrino using microcalorimeters. Holmium-163 is a rare, unusual, synthetic isotope that decays purely by electron capture. The very low total nuclear decay energy (QEC<3 keV) and reasonable half life (4570 years) 163Ho, make it attractive for high precision electron-capture spectroscopy (ECS) near the kinematic endpoint (where the neutrino momentum goes to zero). In the ECS approach, an electron-capture-decaying isotope is embedded directly and completely inside a microcalorimeter designed to capture and measure the energy of all the decay radiation except that of the escaping neutrino. Future studies of the ECS endpoint region with large sensor arrays are planned to measure or put limits on the neutrino kinematic mass. The central challenges for this approach are: isotope production and purification;
incorporation of 163Ho into sensors; high resolution spectroscopy of electron capture decays; independent measurement of QEC; and a complete understanding of the nuclear and atomic physics to determine the neutrino kinematic mass. We have developed the production of 163Ho using proton irradiation of isotopically natural dysprosium targets with both a low-beam-current cyclotron (University of Wisconsin, Madison) and a much higher current proton accelerator (Los Alamos National Laboratory Isotope Production Facility). We performed 163Ho purification with high performance liquid chromatography, producing nanogram scale isotope samples. Over the last two years we have successfully demonstrated the incorporation the 163Ho in absorbers attached to transition-edge-sensor microcalorimeters, and we have measured 163Ho spectra of the M and N line pairs. We will present a detailed discussion of the spectral resolution, line separation and counting statistics depending on the initial target material, purification methods and incorporation techniques.

References:

Acknowledgement: We gratefully acknowledge the support of the Laboratory-Directed Research and Development Program for Exploratory Research of Los Alamos National Laboratory.

![Graph of 163Ho in Au Nanofoam Absorber]