Superconducting transition edge sensor for heavy ion detection

The University of Tokyo
Masashi Ohno, Tomoya Irimatsugawa, Yoneichi Hosono, Hiroyuki Takahashi, Yasuto Miyake, Hiroyuki Matsuzaki

Hitachi, Ltd.
Shuichi Hatakeyama,
Heavy ion cancer therapy

Absorbed dose distribution

Carbon ion X-ray

Higher dose convergence Minimal damage to normal tissues

Heavy ions penetrate into the body to a specific depth, and the dose is concentrated in the very small volume in which the ions come to a stop.

The penetration depth can be adjusted precisely to the tumor area.

Precision measurement of the absorbed dose in heavy ion beam is required.
Background

- Regulation of the tumor tissue
- Adverse event

Probability of cancer recurrence

Uncertainty in dose rate measurement

Negative influence on the therapeutic effect
Objective

Minimizing of the uncertainty in dose rate measurement of heavy ion beam
- less than 5 % of the conventional measurement

Measurement of the absorbed dose in water

\[D[\text{Gy}] = \frac{\text{Energy}[\text{J}]}{\text{Mass}[\text{kg}]} \]

Directly detection of the absorbed energy in heavy ion beam

Precision calorimetry

TES (Transition Edge Sensor)

Measurement by the ionizing chamber

\[D[\text{Gy}] = \frac{\text{Charge}[\text{C}]}{\text{Mass}[\text{kg}]} \cdot \frac{\text{Energy}[\text{J}]}{\text{Charge}[\text{C}]} \]

W-value

Sensitivity fluctuation of ionizing chambers
- temperature, volume, recombination etc.

Uncertainty of W-value
- substituted the W-value of \(\gamma \)-ray from \(^{60}\text{Co} \) source for W-value of heavy ion
Sensor for heavy ion detection

We use the Ir/Au-TES coupled to a tin absorber.

Ir/Au bi-layer: Ir 100nm / Au 15nm
Tc: 138mK
Sn absorber: 0.5 × 0.5 × 0.3mm

Injected 14C ion is fully stopped inside the tin absorber.

We substitute the gamma-ray TES for heavy ion sensor.

TES is cooled by the cryogen-free dilution refrigerator, using the pulse tube cold head.

We have taken several steps against the mechanical vibration derived from the pulse tube cold head.
Gamma-ray detection

84 eV FWHM @59.5 keV (0.1 %)

241Am (59.5 keV)

Sn Escape peak K_β K_α

57Co (122 keV)
The carbon ions were injected from the tandem accelerator.
Signal pulses of the 14C incident events

The signal length is reflected the incident energy of the injected heavy ions.
Pulse shapes of 14C +5 ion incident events

Small pulse groups indicates the different energy loss processes,
Relationship between the pulse height and the current integral of the incident 14C ion events

![Graph showing relationship between pulse height and current integral for 14C +4 ion and 14C +5 ion events.](image-url)
Conclusion

We began to develop the precision heavy ion beam detector applying the superconducting transition edge sensor (TES).

- Our Ir/Au-TES coupled to a tin absorber, have detected the carbon ions which were injected from the tandem accelerator
- Although pulses are fully saturated, the signal length is reflected the incident energy of the injected heavy ions.

Acknowledgment

This research is supported by MEXT/JSPS KAKENHI KIBAN KENKYU-A (Grant Number: 15H02341).

Collaborator:
Masahiro Ukibe, Satoshi Kohjiro, Yasushi Sato, Morihito Shimizu, Tadahiro Kurosawa
National Institute of Advanced Industrial Science and Technology (AIST)
Naruhiro Matsufuji, Makoto Sakama
National Institute of Radiological Sciences (NIRS)
Chiko Otani, Tokihiro Ikeda
RIKEN