A demonstration of cryogenic trans-impedance amplifier using fully-depleted silicon-on-insulator CMOS operational amplifier for far-infrared image sensor

Main author: NAGASE Koichi

Co-authors: Arai Yasuo, High Energy Accelerator Research Organization, Japan
Baba Shunsuke, The University of Tokyo, Japan
Hanaoka Misaki, Nagoya University, Japan
Hattori Yasuki, Nagoya University, Japan
Ikeda Hidehiro, Department of Space Astronomy and Astrophysics
Institute of Space and Astronautical Science (ISAS) Japan Aerospace Exploration A
Kaneda Hidehiro, Nagoya University, Japan
Kochi Chihiro, The University of Tokyo, Japan
Nagase Koichi, Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies)
Ohno Morifumi, National Institute of Advanced Industrial Science and Technology, Japan
Oyabu Shinki, Nagoya University, Japan
Suzuki Toyoaki, Netherlands Institute for Space Research, SRON
Ukai Sota, Nagoya University, Japan
Wada Takehiko, Department of Space Astronomy and Astrophysics
Institute of Space and Astronautical Science (ISAS) Japan Aerospace Exploration A
Watanabe Kentaroh, The University of Tokyo, Japan
Yamamoto Keita, Department of Space and Astronautical Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies)
We are developing low power cryogenic readout integrated circuit (ROIC) for large format far-infrared image sensor using fully-depleted silicon-on-insulator (FD-SOI) CMOS technology.

It is difficult to design ROIC operated below 30 K because N-channel MOSFETs fabricated by conventional bulk-CMOS technology usually suffer from anomalous behavior such as kink and hysteresis caused by impact ionization and carrier freeze out. However, MOSFETs fabricated by FD-SOI CMOS technology show very stable static characteristics at 4.2 K. In consequence, the operational amplifier (OPAMP) fabricated by FD-SOI CMOS technology has excellent performances such as power consumption of 1 micro-W and good stability at 4.2 K.

In this presentation, we report the trans-impedance amplifier (TIA) circuit using FD-SOI CMOS OPAMP at cryogenic temperatures. In order to evaluate a performance in measuring current for the TIA circuit, we combined the TIA circuit with the germanium blocked impurity band (Ge-BIB) detector as very small and calibrated current source. The Ge-BIB detector has calibrated by silicon junction FET (Si-JFET) TIA. We compared the dark current measured by using Si-JFET and FD-SOI CMOS. FD-SOI CMOS OPAMP can operate at low power consumption and achieve low background environment because can operate below 4.2 K. On the other hand, It is difficult for Si-JFET to achieve low power consumption and low background environment because Si-JFET must be heated more than 80 K.

We plan the development of image sensor using the trans-impedance amplifier on balloon telescope for astronomical observations.