Modern microwave SQUID multiplexers with scalable readout

Main author: MATES John (Ben)

Co-authors:
Becker Daniel, National Institute of Standards and Technology
Bennett Douglas, National Institute of Standards and Technology
Hilton Gene, National Institute of Standards and Technology
Johnathon Gard, University of Colorado and National Institute of Standards and Technology
Mates John (Ben), University of Colorado and National Institute of Standards and Technology
Reintsema Carl, National Institute of Standards and Technology
Schmidt Daniel, National Institute of Standards and Technology
Swetz Daniel, National Institute of Standards and Technology
Ullom Joel, National Institute of Standards and Technology
Vale Leila, National Institute of Standards and Technology
Wilson Brandon, National Institute of Standards and Technology

New Transition-Edge Sensor (TES) microcalorimeter applications, such as x-ray spectroscopy for beamline science and direct measurement of neutrino mass, call for sampling rates between 300 kHz and 2 MHz per pixel. To read out more than a couple of pixels at this speed requires much larger output bandwidth than existing multiplexing techniques provide. Large scale bolometric applications will also require a dramatic improvement in total output bandwidth. We plan to meet these needs with a microwave SQUID multiplexer (Mates, APL, 2008), which provides GHz of output bandwidth.

In previous work, we demonstrated microwave SQUID multiplexing of two gamma-ray sensors, the first application of this technique to TES microcalorimeters (Noroozian, APL, 2013). While a successful proof-of-principle, this result used non-scalable, homodyne techniques to demultiplex at room temperature. We now present a demonstration of multiplexing eight TES microcalorimeters using a scalable, open-architecture readout solution. These results pave the way for large-scale (1,000-10,000 pixel), high-speed TES arrays.
In addition to developing the room-temperature readout electronics, we have continued to design, fabricate, and test improved microwave SQUID multiplexer circuits. We will present advances in noise (below 20 pA/sqrt(Hz)), reduction in crosstalk, and expansion of per-pixel bandwidth (up to 1 MHz), that meet the demands of modern TES applications.