Development of readout electronics for POLARBEAR-2 Cosmic Microwave Background experiment

Main author: 
HATTORI Kaori

Co-authors:
Akiba Yoshiki, High Energy Accelerator Research Organization (KEK)
Arnold Kam, University of California, San Diego
Atlas Matt, University of California, San Diego
Baccigalupi Carlo, International School for Advanced Studies (SISSA)
Barron Darcy, University of California, San Diego
Borrill Julian, Lawrence Berkeley National Laboratory
Chapman Scott, Dalhousie University
Chinone Yuji, University of California, Berkeley
Cukierman Ari, University of California, Berkeley
Dobbs Matt, McGill University
Ducout Anne, Imperial College
Elleflot Tucker, University of California, San Diego
Errard Josquin, Lawrence Berkeley National Laboratory
Fabbian Giulio, International School for Advanced Studies (SISSA)
Feeney Stephen, Imperial College
Feng Chang, University of California, Irvine
Fuller George, University of California, San Diego
Goeckner-Wald Neil, University of California, Berkeley
Groh John, University of California, Berkeley
Hall Grantland, University of California, Berkeley
Halverson Nils, University of Colorado, Boulder
Hamada Takaho, High Energy Accelerator Research Organization (KEK)
Hasegawa Masaya, High Energy Accelerator Research Organization (KEK)
Hattori Kaori, High Energy Accelerator Research Organization (KEK)
Hazumi Masashi, High Energy Accelerator Research Organization (KEK)
Hill Charles, University of California, Berkeley
Holzapfel William, University of California, Berkeley
Hori Yasuto, University of California, Berkeley
Howe Logan, University of California, San Diego
Inoue Yuki, High Energy Accelerator Research Organization (KEK)
Irie Fumiya, Kavli IPMU (WPI)
Jaehnig Gregory, University of Colorado, Boulder
Jaffe Andrew, Imperial College
Jeong Oliver, University of California, Berkeley
Katayama Nobuhiko, Kavli IPMU (WPI)
Kaufman Jonathan, University of California, San Diego
Kazemzadeh Kavon, University of California, San Diego
Keating Brian, University of California, San Diego
Kermish Zigmund, Princeton University
Keskitalo Reijo, Lawrence Berkeley National Laboratory
Kisner Theodore, Lawrence Berkeley National Laboratory
Kusaka Akito, Lawrence Berkeley National Laboratory
Le Jeune Maude, Univ Paris Diderot
Lee Adrian, University of California, Berkeley
Leon David, University of California, San Diego
Linder Eric, Lawrence Berkeley National Laboratory
Lowry Lindsay, University of California, San Diego
Matsuda Frederick, University of California, San Diego
Matsumura Tomokaze, Japan Aerospace Exploration Agency (JAXA)
Miller Nathan, NASA Goddard Space Flight Center
Mizukami Kuniyoshi, Kavli IPMU (WPI)
Montgomery Josh, McGill University
Navaroli Martin, University of California, San Diego
Nishino Haruki, High Energy Accelerator Research Organization (KEK)
Paar Hans, University of California, San Diego
Peloton Julien, Univ Paris Diderot
Poletti Davide, Univ Paris Diderot
Puglisi Giuseppe, International School for Advanced Studies (SISSA)
Raum Christopher, University of California, Berkeley
Rebeiz Gabriel, University of California, San Diego
For the next generation Cosmic Microwave Background (CMB) experiments, kilopixel arrays of Transition Edge Sensor (TES) bolometers are necessary to achieve the required sensitivity and their science goals. We are developing readout electronics for PLARBEAR-2 CMB experiment, which multiplexes 40 TES bolometers through a single superconducting quantum interface device (SQUID). POLARBEAR-2 is an upgraded experiment based on POLARBEAR-1, which had first light in January 2012. For POLARBEAR-2, we will build a receiver that has 7,588 TES bolometers coupled to two-band (95 and 150 GHz) polarization-sensitive antennas.

At POLARBEAR-1, we adopted a readout system with a multiplexing factor of 8 in the frequency domain. Extending that architecture to 40 bolometers requires an increase in the bandwidth of the SQUID electronics. To this end, we use Digital Active Nulling (DAN) on the digital frequency multiplexing platform. With DAN, digital feedback is calculated for each bolometer, extending the useful bandwidth of the SQUID amplifier.
At high frequencies, performances of a voltage-biased TES bolometer are limited by parasitic inductance of a cold wiring and series resistance of cryogenic readout electronics. Controlling these parameters allows reduction of systematic errors of CMB observation, such as cross talk and non-linearity. Optimizing resonant frequencies of LC filters in series with TES bolometers also suppresses cross talk. We are developing 40-channel LC filters and low-inductance superconducting cables with low-impedance connectors. We will give an overview of the developments and discuss optimization of these cryogenic readout electronics. Using the new readout components and the modified wiring, we will show performances of TES bolometers biased at high frequency up to 4 MHz.