Hotspot Relaxation Dynamics in a Current Carrying Superconductor

A.G. Kozorezov1, Marsili2, M. J. Stevens3, V. B. Verma3, C. Lambert1, J. A. Stern2, R. Horansky3, S. Dyer3, S. Duff3, D. P. Pappas3, A. Lita3, M. D. Shaw2, R. P. Mirin3, and S. W. Nam3

1Department of Physics, Lancaster University, Lancaster, UK, LA1 4YB
2Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, USA
3National Institute of Standards and Technology, 325 Broadway, Boulder, CO 80305, USA
Dynamics of hotspot relaxation in current carrying superconducting nanowires

• Time-resolved two-photon detection experiments in WSi SNSPD.
• Theory of hotspot relaxation.
• Fano-fluctuations in SNSPDs.
• Role of diffusion

Single-photon detection regime

Two-photon detection regime

Gol’tsman et al., APL 79, 705 (2001)
P_{click} vs Time Delay vs Bias Current

Never Observed Before
Experiment

Wavelength dependence

Temperature dependence

- $\lambda = 1200 \text{ nm}$
- $\lambda = 1650 \text{ nm}$
- $T_B = 250 \text{ mK}$
- $T_B = 2 \text{ K}$
- $T_B = 250 \text{ mK}$
- $\lambda = 1550 \text{ nm}$
Theoretical model

- Dirty superconductor model
- WSi alloy close to metal-insulator transition
- Strong e-e scattering, fast local equilibration:
 - One temperature model
 - Two-temperature model
- Usadel eqns
- Kinetic eqns
Dynamics of hotspot relaxation in superconducting nanowires

\[E_{HS}(T, I_b) = 2N(0)V_{HS} \int_0^\infty d\varepsilon \rho(\varepsilon, T, I_b) \frac{\varepsilon}{\exp(\varepsilon/T) + 1} \]

Initial temperature:
\[E_{HS}(T_i, I_b) = E_{HS}(T_b, I_b) + \eta E_\lambda \]
\[T_i = T_i(I_b, T_b, E_\lambda) \]

Relaxation edge (cut-off temperature)
\[E_{HS}(T_s, I_b) = E_{HS}(T_{co}, I_b) + \eta E_\lambda \]
\[T_{co} = T_{co}(I_b, E_\lambda) \]

Switching current
\[E_{HS}(T_s, I_s) = E_{HS}(T_b, I_s) + \eta E_\lambda \]
\[I_s = I_s(T_b, \lambda) \]
Comparison with experiment

Solution of kinetic equation.
Relaxing HS with changing spectrum.
Strongly non-linear self-recombination.
Summary of simulations vs normalised bias current. Comparison with experiment.
Fano fluctuations in superconducting nanowire single photon detectors

• \(E = \eta E_\lambda, \quad \eta < 1 \)
• \(\eta \) is subject to Fano fluctuations due to
 a) De-coupling from the condensate
 b) Loss of athermal phonons

\[
PCR = \frac{1}{2} \text{erfc} \left(\frac{E(I_b, T_s, B) - E(I_b, T_b, B) - \bar{E}}{\sqrt{2}\sigma} \right)
\]
\[
\sigma^2 = \sigma_1^2 + \sigma_2^2
\]
Effect of Fano fluctuations on PCR
Comparison of theory and experiment

Experiment

Theory
PCR vs magnetic field

FIG. 5: a) - Count rate, for NbN sample illuminated with 826 nm light at $T = 1.8$ K, for different magnetic fields ranging from 0 mT to 300 mT, in steps of 30 mT. b) - Critical current as a function of magnetic field.

Renema et al (2015)

FIG. 6: Simulated PCR as a function of magnetic field for NbN SNSPD.
Fano fluctuations effect on two-photon PCR vs time delay

Experiment

Theory
Summary

• We observed for the first time that the hotspot relaxation time of a superconducting nanowire can be increased by increasing the bias current.
• We developed a model that explains and quantitatively reproduces all the experimental data.
• Fano fluctuations play a fundamental role in determining the SNSPD response.
Non-linearity of response

- Linear extrapolation to $E_\lambda \to 0$ is not consistent with predictions of the kinetic theory.
- Reference current, $I_0 < I_C$ (obtained as linear intercept of bias current axis) and its T-dependence has no physical meaning within kinetic scenario.
- Linear bias current - photon energy dependence appears to be an approximation, which is justified for a limited photon energy range and bias currents outside the range $1 - \frac{I_B}{I_C} \ll 1$.
- Discrimination between mechanisms of single photon detection (Renema et al (2014)) requires more experimental and theoretical efforts.

FIG. 12: Cut-off current as a function of photon energy. Solid line - theory, solid boxes - experiment, dashed line - linear extrapolation.
Experimental Apparatus

P_{click} doubles for “short” t_D
Modeling Hot Electron Dynamics

![Diagram showing the dynamics of electron temperature over time, with markers for the first and second photons, and regions for normal and superconducting states.]
Modeling Hot Electron Dynamics
Summary of simulations vs normalised bias current

FIG. 10: Single photon system detection efficiency (a) and PCR (b) as a function of temperature and wavelength respectively.