Direct Detection of Pu-242 with a Metallic Magnetic Calorimeter
Gamma-Ray Detector

Main author: FRIEDRICH Stephan

Co-authors:
Bates Cameron R., Lawrence Livermore National Laboratory
Enss Christian, Universität Heidelberg
Fleischmann Andreas, Universität Heidelberg
Friedrich Stephan, Lawrence Livermore National Laboratory
Gastaldo Loredana, Universität Heidelberg
Hengstler Daniel, Universität Heidelberg
Pies Christian, Universität Heidelberg

Cryogenic high-resolution gamma-ray detectors can improve the accuracy of non-destructive assay (NDA) of nuclear materials in cases where conventional high-purity germanium detectors are limited by line overlap or the Compton background. We have improved the performance of gamma detectors based on metallic magnetic calorimeters (MMCs) by separating the 0.5mm x 2mm x 0.25mm Au absorber from the Au:Er sensor with sixteen 30 µm diameter Au posts. This ensures that the entire gamma-ray energy thermalizes in the absorber before heating the Au:Er sensor, and consequently improves device linearity and energy resolution. Our MMC gamma-ray detectors have achieved an energy resolution of 46 eV FWHM in a dilution refrigerator at 15 mK, and between 90 and 140 eV FWHM in an adiabatic demagnetization refrigerator at 35 mK. The high energy resolution enables the direct detection of gamma-rays from Pu-242, an isotope that cannot be measured by traditional NDA and whose concentration is therefore inferred through correlations with other Pu isotopes. The Pu-242 concentration of 11.11 ± 0.42 % measured by NDA with MMCs agrees with mass spectrometry results and exceeds the accuracy of correlation measurements.