The design and characterization of Dielectric Microcalorimeters for X-ray photon detection

Main author: HOSHINO Masatoshi
Co-authors: Hoshinoo Masatoshi, Institute of Space and Astronautical Science
Kikuchi Takahiro, Institute of Space and Astronautical Science
Mitsuda Kazuhisa, Institute of Space and Astronautical Science
Sato Kouseke, Tokyo University of Science
Sekiya Norio, Institute of Space and Astronautical Science
Yamasaki Noriko, Institute of Space and Astronautical Science

Dielectric Microcalorimeter (DMC) is a novel radiation detector utilizing GHz resonator (Sekiya et al. 2012). This detector is potentially a candidate to operate as an X-ray detector. The advantage of using DMC is that the detection mechanism is based on a phonon mediation with no Johnson noise or quasi-particle decay process. Therefore, in principle, DMC can achieve a better energy resolution detector than that of TES and MKID. Furthermore, a large format array of DMC can be easily multiplexed by the nature of a resonator circuit in the readout at GHz bandwidth.

This new detector concept has not yet measured the X-ray experimentally, and yet we successfully demonstrated our prototype DMC detects the IR radiation as a bolometer at the operation temperature of 2 K (See details in Kikuchi et al. in this conference).

In this presentation, we report the design of DMC for use as an X-ray photon counter. The design is optimized to detect the 5.9 keV X-ray. It is essential to select the dielectric material that has a desired sensitivity value, $\alpha$. We consider $^{18}$O doped STO(STO18) and KTN as a candidate because the commonly used STO16 does not have a suitable $\alpha$ at 100 mK for our application. KTN is one of the perovskite-type materials. The dielectric permittivity and the specific heat of KTN is measured at cryogenic temperature. Both STO18 and KTN has a thermal sensitivity of $\sim 10^{-3}$ at 100 mK, which is ideal for our application. If we assume a size of 300 um square DMC resonator operating at 100 mK, we need a Q-value of 2000 and $\alpha = 10^{-3}$. As a first prototype DMC optimizing at 5.9 keV, we employ STO18 due to our familiarity of a processing technique using the conventional STO16. We will present the detailed detector design, and preparatory measurements to this detector.