Improvements in W/Al Quasiparticle-trap-assisted electrothermal-feedback transition-edge-sensors (QETs) for use in the Cryogenic Dark Matter Search (CDMS)

Main author: KREIKEBAUM John Mark
Co-authors: Brink Paul, SLAC National Accelerator Laboratory
Cabrera Blas, Stanford University
Cherry Matt, SLAC National Accelerator Laboratory
Kreikebaum John Mark, Stanford University
Tomada Astrid, SLAC National Accelerator Laboratory
Yen Jeffrey, Stanford University
Young Betty, Stanford University

We present processing improvements in the fabrication of superconducting W/Al quasiparticle-trap-assisted electrothermal-feedback transition-edge sensors (QETs) used in the design of Cryogenic Dark Matter Search (CDMS) detectors. QET device design utilizes Al energy collection fins coupled to W transition-edge-sensors (TESs) allowing energy to be collected from more surface area of our detectors without sacrificing energy sensitivity. The improved design uses the same photolithography masks as the earlier generation of devices, but inverts the order of the W and Al layers. Using feedback from SEM and FIB imagery, the challenges associated with fabricating the two geometries have been mitigated and will be presented alongside experimental data comparing device performance. The new generation of devices offers a simplified and robust way to dramatically increase the thickness of the Al fins allowing future detector design to implement larger Al fins.