Comparison of transition properties among Mo/Au TES microcalorimeters with varied positioning of normal-metal features and bias leads

Main author: ECKART Megan

Co-authors: Adams Joseph, NASA Goddard Space Flight Center
Audley Heather, NASA Goddard Space Flight Center
Bandler Simon, NASA Goddard Space Flight Center
Betancourt-Martinez Gabriele, NASA Goddard Space Flight Center
Brekosky Regis, NASA Goddard Space Flight Center
Chervenak James, NASA Goddard Space Flight Center
Chiao Meng, NASA Goddard Space Flight Center
Eckart Megan, NASA Goddard Space Flight Center
Figueroa-Feliciano Enectali, Northwestern University
Finkbeiner Fred, NASA Goddard Space Flight Center
Kelley Richard, NASA Goddard Space Flight Center
Kilbourne Caroline, NASA Goddard Space Flight Center
Lee Sang-Jun, NASA Goddard Space Flight Center
Morgan Kelsey, NIST Boulder
Porter F. Scott, NASA Goddard Space Flight Center
Sadleir John, NASA Goddard Space Flight Center
Smith Stephen, NASA Goddard Space Flight Center
Wassell Edward, NASA Goddard Space Flight Center
Yoon Wonsik, NASA Goddard Space Flight Center

We are developing arrays of transition-edge-sensor (TES) microcalorimeters for x-ray astrophysics that will enable high-resolution imaging spectroscopy with energy resolution of <3 eV (FWHM) in the 0.1-10 keV waveband. Our standard device design uses a 140x140 micron^2 Mo/Au bilayer TES (Tc~0.1K) with added normal-metal features for noise mitigation. The TES sits on a SiN membrane and is coupled to an overhanging absorber made of Au or Au/Bi; the absorber contacts the TES/membrane
in a T-shaped contact region. We present a detailed comparison of transition properties among such devices with variations in the relative orientation of the normal-metal features, absorber contact region, and the superconducting bias lead routing near the TES. For example, we show that for a fixed bias lead configuration the magnetic field dependence of the transition properties significantly changes depending on which side of the TES the T-shaped contact region exits onto the membrane perpendicular to the current flow.